If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+15x-60=0
a = 3; b = 15; c = -60;
Δ = b2-4ac
Δ = 152-4·3·(-60)
Δ = 945
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{945}=\sqrt{9*105}=\sqrt{9}*\sqrt{105}=3\sqrt{105}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-3\sqrt{105}}{2*3}=\frac{-15-3\sqrt{105}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+3\sqrt{105}}{2*3}=\frac{-15+3\sqrt{105}}{6} $
| (1^x)=6 | | -3x+6x-13=3(x-2)-32 | | 6(x+6)=41+6x | | (8y+32)=(65+5) | | 1^x=5 | | -2=2(r-10)-4 | | 11y+19=26 | | 0=4(0.5x-8)(8-40x) | | x^2-x=650 | | -2(-1-1)=1-3x | | 0(x-3)=9x-27 | | 3/4k-(k+1/3)=1/12(k+4) | | -4+8n=-4(1-2n) | | 4*x+40=-5+x | | 5^n=42/2.2 | | 7x–30+4x+18=180 | | 2X-9x+2=x-3+5 | | 6z=4×(1/2z-8 | | 6×-11x-17=-82 | | x=16-18+20 | | 2y=y5 | | 8(8+x)=-72 | | 6–3a=-3 | | 4x-1=1+2x | | 6(d-2)=6(d+6)-d | | (5x/9)+(4x/3)=17 | | –10=–5(3m –7) | | 8x+6=-3(x-5) | | x^2-47x+546=0 | | 9(x+7)=6x+6 | | 28=17+r | | 4x-43=-11 |